Subject Physics Medium ENGLISH
Faculty SSI Sir Status AVAILABLE
Category COMPLETE COURSE Lecture 173
You May Pay in Installments through Credit Card
Product Type Prices Validity
  USB 11000 50%OFF 5500 2 year


Lecture# Description Duration
01 Variables, functions, angles, units of angles (Degree & radion) , conversion of units, Trigonometric ratios/ functions, values of trigonometric ratios, values of trigonometric ratios for angles grater than 90°, 36 Minutes
02 unit circle method, CAST rule. Trigonometric formula, sine rule & cosine rule , Logrithem , exponential and inverse functions. 1 Hr 03 Minutes
03 oordinate geometry , slope of a line , equation of straight line, parabola , ellipse, circle and rtectangular hyperbola. 30 Minutes
04 Differentiation, geometrical meaning of differentiation, slope of a line, formulae for differentiation, rules of differentiation- addition/subtraction rule, product rule, quotient rule, constant multiple rule, chain rule. 43 Minutes
05 Higher order Differentiation , implicit functions , important problems . 25 Minutes
06 Differentiation  as rate measurement, maxima & minima. 50 Minutes
07 Integration, geometrical meaning of integration, formulae of integration, 16 Minutes
08 Definite integration,  rules of integration, addition/ subtraction rule, method of substitution. Integration by parts, Integration as area under curve, indefinite integration , area under curve.   48 Minutes
09 ntroduction to vectors, null vector, unit vector, negative of a vector, graphical representation and mathematical representation of a vector, angle b/w two given vectors, 36 Minutes
10 Resolution of vector.Addition of vectors, triangle method and parallelogram method, substraction of vectors. 26 Minutes
11 Dot product and its uses. 27 Minutes
12 Cross product and its uses ,  right hand screw rule 48 Minutes



Lecture# Description Duration
01 Rest & motion, distance & displacement, speed, average speed ,  time average and space average,  instantaneous speed, Uniform speed and non uniform speed, 49 Minutes
02 velocity, average and instantaneous velocity, acceleration, average and instantaneous acceleration. 41 Minutes
03 Equations of kinematics with constant acceleration, steps used to solve the problems based on equation of kinematics, motion under gravity. 41 Minutes
04 graphical analysis, some important graphs, conversion of graphs, information collected from graphs. 16 Minutes
05 Variable acceleration, steps used to solve the problems based on variable acceleration, when acceleration is dependent on time, distance and velocity. 21 Minutes


Lecture# Description Duration
01 Ground to ground projectile, time of flight, net velocity, trajectory equation, maximum height, 40 Minutes
02  horizontal range.Projection at complementary angles from ground, some important  relations and problems. 22 Minutes
03 Problems based on ground to ground projectile. 20 Minutes
  • Projectile from tower projected horizontally, , time of flight, net velocity, trajectory equation, horizontal range
  • Projectile from tower projected above horizontal, time of flight, net velocity, trajectory equation, maximum height.  horizontal range
  • Projectile from tower projected below horizontal. time of flight, net velocity, trajectory equation, horizontal range
40 Minutes
05 Problem on projectiles from tower 17 Minutes
  • Projectile from inclined plane, projected up the incline plane , time of flight, net velocity, trajectory equation, maximum height. range
  • Projectile from inclined plane, projected down the incline plane , time of flight, net velocity, trajectory equation, maximum height. Range
41 Minutes
07 Problems based on projectile on incline plane. 19 Minutes

Projectiles from moving platform, Collision of a projectile with vertical wall, some miscellaneous examples.

41 Minutes



Lecture# Description Duration
01 Introduction to relative motion, one dimensional relative motion and two dimensional relative motion . Uses of equations of kinematics in 1D relative motion. 48 Minutes
02 uses of equations of kinematics in 2D relative motion , Velocity of approach and velocity of separation in 1D, Velocity of approach and velocity of separation in 2D, condition for two particles to collide, minimum separation b/w two moving particle, time taken to come at minimum separation miscellaneous problems . 45 Minutes
03 miscellaneous problems 32 Minutes
04 River boat problem in one dimension. 18 Minutes
05 River boat problem in two dimensions, direct crossing, minimum time taken to cross the river, minimum drift , minimum velocity 45 Minutes
06 Wind-aeroplane problem. Rain man problem, some illustrations. 48 Minutes


Newton’s laws of motion (NLM)

Lecture# Description Duration
01 Force, fundamental forces, normal force, tension force, Newton’s lst law, 2nd law , and 3rd law, equation of motion, Inertia.  50 Minutes
02 free body diagram ,Equilibrium, types of equilibrium, steps to solve the problems based on equilibrium, problems 48 Minutes
03 steps used to solve the problems of accelerated motion, problems , atwood machine 32 Minutes
04  Constrained motion, string constraint, displacement method, tension method, differentiation method, two block one pulley system, 36 Minutes
05 constrained motion when string is inclined, wedge constraint.  32 Minutes
06 Weighing machine, motion inside lift, apparent weight, weightlessness, spring balance , spring and spring force. 42 Minutes
07 Reference frame, inertial frame and non-inertial frame, pseudo force, illustrations  31 Minutes
08 Newton’s laws for system , problems 25 Minutes


Lecture# Description Duration
01 Introduction to friction, properties of friction. Kinetic friction,coefficient of kinetic friction.  45 Minutes
02 Static friction, coefficient of static friction, self adjustable nature of static friction, driving force,    graph relating friction with driving force. 46 Minutes
03 Contact force, angle of friction, minimum force required to slide a block , why pulling is easier than pushing? 31 Minutes
04 Angle of repose, minimum and maximum force on the inclined plane so that block does not   move , graph 27 Minutes
05 System of two blocks, steps used to check the slipping b/w two blocks, problems 39 Minutes
06 System of three blocks and miscellaneous examples.  29 Minutes


Lecture# Description Duration
01 Introduction to work, definition of work, point of application of force. Calculation of work done when force is constant 35 Minutes
02  Sign of work done . work done by  variable force, 28 Minutes
03 work done from force-displacement graph, work done by friction, normal and gravity 24 Minutes
04 work done by  spring force.Work done by variable force  along given path, conservative and non-conservative forces 28 Minutes
05 methods to identify conservative forces , Del-operator, curl, Potential energy, its definition, external agent, 42 Minutes
06 relation b/w conservative force and potential energy, how to find P.E. if conservative force is given and vise-versa. Refrence line ,  gravitational Potential energy and spring potential energy 41 Minutes
07 Equilibrium, types of equilibrium, stable, unstable and neutral equilibrium. 26 Minutes
08 Kinetic energy , Work energy theorem, some examples. 17 Minutes
09 Problems based on work energy theorem 26 Minutes
10 Energy conservation, some examples, power, instantaneous power and average power. 26 Minutes



Lecture# Description Duration
01 Similarities b/w translational and rotational motion, angular displacement and its direction . 34 Minutes
02 angular velocity and angular acceleration, equations of circular kinematics. 37 Minutes
03 Relation b/w linear and rotational quantities, tangential acceleration centripetal/redial/normal acceleration. Total acceleration. 33 Minutes
04 Time period , frequency , angular frequency , Problems 23 Minutes
05 Radius of curvature of path, radius of curvature in projectile motion. 32 Minutes
06 Types of circular motion, horizontal circular motion. Some important examples. Steps used to solve the problems based on circular dynamics. Vertical circular motion, some important examples. 50 Minutes
07 Vertical circular motion of a ball attached with string , vertical circular motion of a ball attached with light rod. 35 Minutes
08 Problems , Banking of roads with  and without friction. 26 Minutes
09 Centrifugal force, its direction and magnitude. Some examples. 33 Minutes



Lecture# Description Duration
01 Center of Mas, definitions, Type of  mass distribution, discrete and continuous mass distribution, linear mass density, surface mass density, volume mass density. Calculation of com for system of particles. Com of system of two particles. 42 Minutes
02 Calculation of com for continuous mass distribution, com of rod, semi-circular ring, semi-circular disc, solid hemi-sphere, hollow hemi-sphere, solid cone. 51 Minutes
03 Com of a body with hole, problems 25 Minutes
04 Motion of com, velocity of com, acceleration of com, impulsive force, impulse, impulse-momentum equation, important examples.Conservation of momentum, some important conclusions and examples. 48 Minutes
05 Miscellaneous  problems 19 Minutes
06 Some important points related to center of mass and miscellaneous problems. 40 Minutes
07 Spring mass system, steps to solve  the problems based on spring-mass-system. Problems , Collision, line of impact, coefficient of restitution, 39 Minutes
08 classification of collision, head-on-inelastic collision, head on elastic collision, head on-perfectly in elastic collision. Problems on collision. 39 Minutes
09 collision with heavy mass.   Oblique collision, problems 30 Minutes
10 oblique collision with wall , problems 27 Minutes
11 Variable mass, thrust force, rocket propulsion. 28 Minutes



Lecture# Description Duration
01 Definitions of periodic motion, oscillatory motion, and SHM, frequency, time period, amplitude, angular frequency.Differential equation of SHM, equation of SHM, 32 Minutes
02 SHM as projection of uniform circular motion, phase, 30 Minutes
03 Problems on phase , equation of SHM when mean position is not at origin. 30 Minutes
04 Velocity, acceleration and displacement of particle in terms of time (t) and displacement (x). Graphs, potential, kinetic and total energy in terms of time (t) and displacement (x), important graphs. 54 Minutes
05 Force method to find the time period, spring mass system , 47 Minutes
06 problems on force method, combinations of springs , springs in series , springs in parallel, 17 Minutes
07 energy methods to find the time period and Problems on spring mass system 46 Minutes
08 Angular SHM ,Differential equation of angular SHM, equation of angular SHM, method to find the time period in angular SHM 30 Minutes
09 Time period of simple pendulum, time period of simple pendulum when forces other than gravity and tension are also present, effective g. Fractional and percentage error , error in measurement of g, time period of simple pendulum when length of wire is comparable to radius of earth, Compound pendulum, its time period, minimum time period, 52 Minutes
10 Problems on compound pendulum , Torsional pendulum. 22 Minutes
11 Superposition of two parallel SHMs and perpendicular SHMs. 40 Minutes


Lecture# Description Duration
01 Assumptions for Ideal gas, Average velocity, Average speed, RMS speed, Most Probable speed,  Maxwell’s velocity distribution graph. 31 Minutes
02 Miscellaneous problems related to calculation of RMS speed , average speed , most probable speed. 20 Minutes
03 Derivation of Ideal gas equation, calculation of kinetic energy of molecules 23 Minutes
04 Degree of Freedom, Maxwell’s law of Equipartition of energy and Internal energy. 17 Minutes
05 Mean Free Path, Some miscellaneous problems. 33 Minutes
06 Specific Heat Capacity, Adiabatic Exponent and gaseous mixture , molecular weight , Cp , Cv  and γ of gaseous mixture. 33 Minutes
07 Work done by gas when pressure is constant and when pressure is variable, indirect method of calculation of work done by gas, work done from PV diagram. 26 Minutes
08 Problems based on calculation of work done by gas. 35 Minutes
09 Zeroth law of Thermodynamics, first law of Thermodynamics, Sign convention for Heat supplied, work done by gas and change in Interval energy .problems based on 1st law of thermodynamics. 39 Minutes
10 Thermodynamics processes ,Isochoric process, Isobaric process, Isothermal process, , calculation of heat supplied & Specific Heat Capacity of all the processes. 25 Minutes
11 Adiabatic process ,  Polytropic process, calculation of heat supplied & Specific Heat Capacity of these processes. 31 Minutes
12 Cyclic process, Heat Engine and its Efficiency, carnot cycle 27 Minutes
13 Refrigerator and its Coefficient of Performance,  20 Minutes
14 Miscellaneous problems and Free Expansion. 31 Minutes


Lecture# Description Duration
01 Variation in pressure inside liquid with height, problems 32 Minutes
02 Problems , Inclination of liquid surface in static condition, rotation of container filled with liquid.  44 Minutes
03 Archimedes principle  and force of buoyancy , Pascal’s law, 41 Minutes
04 atmospheric pressure, Gauge pressure, Absolute pressure, Barometer, and Manometer. 20 Minutes
05 Force applied by liquid on base of container and wall of container.Center of gravity, Center of Buoyancy, Meta-center, stability of completely submerged body and partially submerged body , metacentre. 56 Minutes
06 Types of flow, Uniform and Non-Uniform flow, Laminar and Turbulent flow, Reynolds number, Equation of continuity, Volume flow rate and Mass flow rate, Bernoulli theorem. 42 Minutes
07 Applications of Bernoulli theorem, 21 Minutes
08 Venturimeter, velocity of Efflux, Syphon  action. 29 Minutes



Lecture# Description Duration
01 Specific Heat Capacity, Heat Capacity, Specific Heat Capacity of water, 20 Minutes
02 definition of unit of Calorie, Latent heat, Latent Heat of Fusion, Latent Heat of Vaporization. 20 Minutes
03 change of State (Phase) of water with Temperature, illustrations. 18 Minutes
04 Problems , temperature scale.. 44 Minutes



Lecture# Description Duration
01 Linear expansion, Coefficient of Linear expansion, Differential expansion 18 Minutes
02 effect of Temperature on pendulum clock, error in measurement by metallic scale, 25 Minutes
03 Bimetallic strip, thermal stress 22 Minutes
04 Areal expansion, Coefficient of Areal expansion, relation between α and β, expansion of holes inside metallic plate. Coefficient of Volume expansion, relation between α and γ, 28 Minutes
05 Effect of Temperature on Density, Real and Apparent expansion of liquids. 37 Minutes



Lecture# Description Duration
01 Surface Tension ,wetted perimeter 31 Minutes
02 Surface Energy, cause of Surface Tension.Excess Pressure inside liquid drop, Excess pressure inside Soap bubble. Radius of curvature of common surface of double bubble. 49 Minutes
03 Cohesive force and Adhesive force, shape of liquid surface, Angle of contact.Capillary rise and illustrations. 33 Minutes
04 Capillary action with mercury , radius of lower meniscus 28 Minutes
05 Some miscellaneous problems 18 Minutes



Lecture# Description Duration
01 Definition and classification of wave, Mechanical & Non mechanical waves, Transverse & Longitudinal  waves, Progressive and Stationary waves 29 Minutes
02 Differential form of wave equation, General form of equation of Progressive wave, information that can be collected from general form of wave equation 26 Minutes
03 How to find wave equation in terms of x and t when equation is given in terms of either x or t. wave on string introduction,Wavelength,Time period ,Frequency, Angular frequency, Wave number, Wave speed and velocity of particle, acceleration of particle, slope of string, direction of velocity of particle, 51 Minutes
04 Expanded form of standard equation of wave .  relation b/w Phase difference and Path difference, relation  b/w Phase difference and Time difference 34 Minutes
05 Derivation of speed of wave on string, examples 25 Minutes
06 Instantaneous and Average power transmitted by wave, Instantaneous and average intensity of a wave on string 33 Minutes
07 Superposition of waves,Interference,Resultant intensity, Constructive and Destructive Interference , miscellaneous problems. 1 Hr 02 Minutes
08 Reflection and Transmission of wave from one to other medium, effect of Reflection and Transmission on frequency, speed, Wavelength and Phase.
equation of reflected and transmitted waves. Amplitudes of reflected and transmitted wave
32 Minutes
09 Stationary waves,  Nodes and Anti-nodes, Phase difference, properties of stationary waves. 59 Minutes
10 Equation of stationary waves , vibration of string fixed at both ends, vibration of string fixed at one end.Resonance, Sonometer, Melde's experiment 39 Minutes
11 kinetic energy and potential energy of small element of string. 30 Minutes



Lecture# Description Duration
01 Introduction to Sound wave, variation of pressure with time and distance, variation in density and position with time. 24 Minutes
02 Equation of sound wave, relation b/w pressure Amplitude and Displacement Amplitude. Phase difference b/w Pressure wave and Displacement wave. Speed of Sound wave, Newton’s formula and La-place corrections. 32 Minutes
03 Dependence of speed of sound on Temperature, Pressure and relative Humidity. Intensity of sound wave, Wave front, Shape of wave-front for point source, Line source and Plane source.  Variation of Intensity with distance from source. 44 Minutes
04 Comparison of two sound waves. Sound level, relative Sound Level, Pitch , waveform and quality of sound. Superposition of two sound waves, interference constructive and destructive interference, Reflection of Sound, Echo. 44 Minutes
05 Stationary wave in sound, vibrations of Air column in Organ pipes, Open Organ Pipe and Closed Organ Pipe 36 Minutes
06 Resonance Tube method to find the speed of sound, Beats. 30 Minutes
07 Doppler’s effect, when observer is moving and source is stationery, when source is moving and observer is stationary, when both source and observer are moving. 40 Minutes
08 Doppler’s effect When medium is also moving.miscelleneous problems. 44 Minutes


Lecture# Description Duration
01 Elasticity, Plasticity, Deforming force, The reason behind Elastic and Plastic behaviour, Restoring force, Stress, Longitudinal Stress, Shear Stress and Bulk Stress, Strain, Longitudinal Strain, Shear Strain, Bulk Strain. Hook’s law, Modulus of Elasticity, Young’s Modulus, Modulus of Rigidity, Bulk Modulus, Compressibility, 41 Minutes
02 Variation of Strain with Deforming force, Elastic Limit, Yield point, Fracture point, elongation in wire due to self weight. Analogy with spring, Spring constant of a wire Elastic Potential energy stored in the deformed wire. 25 Minutes
03 Viscosity, Velocity Gradient, Viscous Force, Stoke’s forces Terminal Velocity. 28 Minutes



Lecture# Description Duration
01 Fundamental Quantities, Derived Quantities and Supplementary Quantities, Dimensions, Dimensional formula, some important concept (points) about dimensions, 27 Minutes
02 Problems on dimensions, Dimensional Analysis. Units, System of Units and conversion of Units. 26 Minutes



Lecture# Description Duration
01 Newton’s law of gravitation, gravitational field due to point mass, circular arc, circular ring, circular disc, long rod, infinite plate, hollow sphere and solid sphere 43 Minutes
02 variation in acceleration due to gravity with height and depth, effect of rotation of earth, effect of shape of earth. 27 Minutes
03 Gravitational potential, gravitational potential due to point mass, circular arc, circular ring, circular disc, hollow sphere, solid sphere, relation b/w gravitational field and gravitational potential . 31 Minutes
04 Gravitational potential energy, P.E. of two point mass system, self energy of hollow sphere and solid sphere, miscellaneous examples. 30 Minutes
05 Motion of satellite, orbital velocity, time period, energy of satellite, binding energy, escape velocity, geostationary satellite. 26 Minutes
06 Kepler's  laws,  path of a satellite according to its projection velocity.  Miscellaneous examples. 47 Minutes


Lecture# Description Duration
01 Introduction, similarities b/w rotational and translational motion. Rigid body, types of motion of rigid body. 32 Minutes
02 Moment of inertia definitions, calculation of MOI of a point mass, MOI of system of particles, MOI of a rod, 33 Minutes
03 MOI of ring, MOI of disc, MOI of solid sphere, MOI of hollow sphere, MOI of cone, MOI of solid cylinder, MOI of hollow cylinder 1 Hr
04 Perpendicular axes theorem, parallel axes theorem. MOI of a body with hole 1 Hr 08 Minutes
05  Radius of Gyration. Torque, Calculation of torque, 55 Minutes
06 Force couple, point of application. 20 Minutes
07 Rotational and translational equilibrium. 33 Minutes
08 Rotational equation of motion accelerated rotational motion. Some important examples. 54 Minutes
09 Combined motion, rolling motion, slipping, skidding, perfect rolling, 1 Hr 01 Minutes
10 Some important problems, trajectory of a point on wheel performing perfect rolling and radius of curvature of trajectory. 31 Minutes
11 instantaneous axis of rotation,  rotational K.E. , conversion of imperfect rolling to perfect rolling 1 Hr 14 Minutes
12 Direction of friction in perfect rolling , Angular momentum, calculation  of angular momentum, 36 Minutes
13 calculation  of angular momentum, 30 Minutes
14 conservation of angular momentum in pure rotational motion , in pure translational motion  and in combined motion , angular impulse momentum equation. 39 Minutes
15 Collision of a particle with rigid body 23 Minutes
16 Toppling and sliding. 34 Minutes


Lecture# Description Duration
01 Methods of heat transfer, conduction, convection and radiation. steady state, temperature gradient. Laws of conduction. Analogy with electric current  31 Minutes
02 Problems on conduction, 1D heat transfer, 2D heat transfer, 3D heat transfer. Formation of ice layer on lake water surface. 36 Minutes
03 Convection, Radiation, Reflection power, Absorption power, Transmittance power, Black body. Ferry’s block body. Emissive power of a body, Spectral emissive power, absorptive power, spectral absorptive power.  Emissivity of a body, Prevost's heat exchange theory 34 Minutes
04 Kirchhoff’s law of radiation, Stefan’s law of heat radiation, rate of cooling 
Newton’s law of cooling
24 Minutes
05 Average temperature method, integration method. Black body radiation, Wien's displacement law, solar constant 27 Minutes


Write Your Review