

NUCLEON CHEMISTRY

CLASSS FOR IIT-JEE

PT for Target IIT-JEE 2016

Time : 1 hr Marks : 120

Atomic masses: [H = 1, D = 2, Li = 7, C = 12, N = 14, O = 16, F = 19, Na = 23, Mg = 24, Al = 27, Si = 28, P = 31, S = 32, Cl = 35.5, K = 39, Ca = 40, Cr = 52, Mn = 55, Fe = 56, Cu = 63.5, Zn = 65, As = 75, Br = 80, Ag = 108, I = 127, Ba = 137, Hg = 200, Pb = 207]

SCQ (30) [4,-1]

- 1. Which of the following compounds would yield more then one monochloro products on photochemical chlorination
 - (A) Neopentane

(B) Hexamethylcyclohexane

(C) Hexamethylbenzene

- (D) Hexamethylcyclopropane
- 2. Only one mole of compound P is obtained by reductive ozonolysis of Q. Q on catalylic hydrogenation formed R. R on monochlorination produced only one product 'S'. All compounds P,Q,R,S have same number of carbon atoms. Choose the correct option.

	Р	Q	R	S		
А	(CH ₃) ₂ C=O	(CH ₃) ₂ C=C(CH ₃) ₂	(CH ₃) ₂ CH–CH(CH ₃) ₂	(CH ₃) ₂ C–CH(CH ₃) ₂ CI		
В				CI		
С	0=0			CI		
D			Д	CI		

3. Which one of the following will not give white precipitate with ammonical silver nitrate solution

(A)
$$CH_3 - C \equiv C - CH_3$$

(B)
$$CH_3 - CH - C \equiv C - CH_3$$

(C)
$$CH_3 - CH_2 - CH = CH_2$$

- (D) All of these
- **4.** A set of reagents (1 to 7) are different samples, seperately reacted with the following compound

1. NaHCO

2. 2, 4, DNP

3. Na metal

- 4. AgNO₃ + NH₄OH
- 5. Fehling's solution
- 6. Cu₂Cl₂ + NH₄OH

7. Br_2 / H_2O

The reagents which give positive test with the given compound are:

- (A) 1, 2, 3, 4, 5
- (B) 3, 4, 5, 6, 7
- (C) 1, 2, 3, 4, 7
- (D) 1,2,3,4,6,7

5. Which of the following conformations have zero dipolemoment:

$$(A) \xrightarrow{H} \xrightarrow{OH} H$$

$$(D) \xrightarrow{H} \xrightarrow{CI} \xrightarrow{H}$$

6. In the following reaction

$$\frac{\text{(i) O}_3}{\text{(ii) Zn , H}_2\text{O}} \times X \xrightarrow{\text{NH}_2\text{OH/}\Delta} Y$$

The number of stereoisomers of Y and number of optically active stereoisomers of Y formed respectively are. (A) 3, 0 (B) 8, 8 (C) 4, 2 (D) 6, 4

7. $Ph-CH_2-CH-CH_3 \xrightarrow{CI_2 \\ hv} No. of monochloro \xrightarrow{Fractional Distillation} No. of Fractions 'n' Products 'm' (total isomers)$

value of 'm' and 'n' respectively

- (A) 6, 5
- (B) 6. 4
- (C)6,6
- (D) 5, 3

8. How many stereoisomers are possible for C[CH(OH)CH₃]₄:

- (A) 8
- (B) 6
- (C)5
- (D) 4

9. Column – I

$$(a)_{H_3C} \xrightarrow{CI}_{H} \xrightarrow{CH_3} H_3C \xrightarrow{H}_{CI}$$

(p) Stereoisomers

(q) Identical

(c)
$$H_3C$$
 C
 CH_3
 CH_3
 CH_3

(r) Diastereomers

(s) Geometrical isomers

(A) (a)
$$- p,r$$
, (b) $- p,r,s$ (c) $- q$ (d) $- p$

(B) (a)
$$-p,r$$
, (b) $-p,r$ (c) $-p$ (d) $-q$

(C) (a)
$$-p$$
, r , (b) $-r$, r , (c) $-p$ (d) $-q$

(D) (a)
$$-r$$
, (b) $-p$ (c) $-q$ (d) $-s$

- **10.** Which will not perform iodoform reaction with I₂/OH⁻?
 - (A) CH₃COCH₂CH₃
- (B) CH₃CONH₂
- (C) C₆H₅COCH₃
- (D) CH₂CHO
- 11. Compound (X) (C₃H₂DCI) rotates plane polarized light towards right hand side. It does not give red precipitate with Cu₂Cl₃/NH₄OH. (X) can be
 - (A) H–C≡C—CHDCl
- (B) D CI
- (C) CHD=C=CHCI
- (D) CH₂=C=CDCI

- 12. 2D, 3L, 4D, 5D, 6-Pentahydroxy hexanal can give.
 - (x) Tollen's Test

(A) x, y, z, s

- (y) Lucas Test
- (z) 2, 4-DNP Test

- (w) Baeyer's Test
- (s) FeCl₃ Test
- (B) x, y, z, w, s
- (C) x, y, z
- (D) x, y, z, w
- **13.** The ozonolysis reaction of the given compound gives two products in the ratio:

- (A) 6:3:1
- (B) 9:3:1
- (C) 6:4
- (D) 8:4
- 14. The number of stereoisomers and number of meso compounds possible for the given structural formula
 - $CH_3 CH HC = CH CH CH_3$ is:
 - (A) 6, 2
- (B) 4. 2
- (C)6,3
- (D) 4, 1

- **15.** Which statement is correct.
 - (A) Most stable conformational isomer of HOCH, CH, OH is Gauche.
 - (B) All conformational isomers of n-butane are degenerate.
 - (C) Conformational energy of ethane is more than that of n-butane.
 - (D) Most stable conformational isomer of n-butane is Gauche.
- **16.** The abundance of three isotopes of oxygen are as follows

% of $O^{16} = 90\%$

% of O^{17} + % of O^{18} = 10%

Assume at. mass same as mass no. Find out % of O¹⁷, if the isotopic mass is 16.12.

- (A) 2
- (B) 4
- (C)8
- (D) 16
- 17. A given sample of pure compound contains 9.81 gm of Zn, 1.8×10^{23} atoms of chromium and 0.60 mol of oxygen atoms. What is the simplest formula.
 - (A) ZnCr₂O₇
- (B) ZnCr₂O₄
- (C) ZnCrO₄
- (D) ZnCrO_e
- **18.** A drug marijuna owes its activity to tetrahydrocarbinol, which contains 70% as many C atoms as H atoms and 15 times as many hydrogen atoms as oxygen atoms. The number of mole in a gm of it is 0.00318. The molecular formula will be
 - $(A) C_{20} H_{30} O_2$
- (B) $C_{21}H_{30}O_2$
- $(C) C_{12} H_{20} O_2$
- (D) $C_{12}H_{20}O_3$
- **19.** A mixture of NH₄NO₃ & (NH₄)₂HPO₄ showed the mass percent of nitrogen to be 30.40%. The mass ratio of the two components in the mixture will be
 - (A) 2:1
- (B) 1:2
- (C) 1:3
- (D) 3:1

20.	5 moles of A, 6 moles of Z and mixed with sufficient amount of C to produce final produced 'F'. Then find the maximum moles of 'F' which can be produced. Assuming that the product formed can also be reused. Reactions are A + 2 Z> B												
	(A) 3 m	oles	B + C -	→ Z - (B) 4.5			(C) 5 m	noles		(D) 6 n	noles		
21.	A samp	A sample of H_2SO_4 (density 1.787 g mL ⁻¹) is labelled as 86% by weight. What volume of acid has to be us											be used
	to make 1 litre of 0.2 M H ₂ SO ₄ ?												
	(A) 25.5	5 mℓ		(B) 51	ml		(C)12.7	75 mℓ		(D) 10	2 ml		
22.	What would be the molality of a solution obtained by mixing $(d = 1.218 \text{ g mL}^{-1})$ and 70% by weight H_2SO_4 ($d = 1.610 \text{ g mL}^{-1}$)									umes o	f 30% by	/ weight	H ₂ SO ₄
	(A) 11.2	22		(B) 22.	44		(C) 5.6	1		(D) 2.8	805		
23.	In an evacuated closed isolated chamber at 250° C, 0.02 mole PCI_5 and .01 mole CI_2 are $(PCI_5 \rightleftharpoons PCI_3 + CI_2)$. At equilibrium density of mixture was 2.48 g/L and pressure was 1 atm. The of total moles at equilibrium will be approximately										Cl ₂ are tm. The	mixed number	
	(A) 0.012			(B) 0.022			(C) 0.0	32		(D) 0.045			
24.	In the reaction $A_2(g) + 4B_2(g) \Longrightarrow 2AB_4(g)$, ΔH (A) low temperature and hight pressure (C) low temperature and low perssure						 > 0. The decomposition of AB₄(g) will be favoured at (B) high temperature and low pressure (D) high temperature and high pressure 						
25.	In which of the following reactions, the system will shift towards the forward reaction by adding ir constant pressure?								ding iner	t gas at			
		(A) $PCl_5(g) \rightleftharpoons PCl_5(g) + Cl_2(g)$ (C) $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$					(B) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ (D) $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$						
26.	pressur	The equilibrium constant K_p for the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ at 497°C is found to be 636 mm Hg. If the pressure of the gas mixture is 182 mm, calculate the percentage dissociation of N_2O_4 . At what pressure we it be half dissociated?											
	(A) 477 mm			(B) 277 mm		(C) 877 mm			(D) 1477 mm				
27.									6 dissocia	ated. Ca	alculated	the pres	ssure at
	which PCI ₅ will be 20% d (A) 0.96 atm					(C) 3.96 atm		(D) 5.96 atm					
28.	Some solid NH_4HS is placed in flask containing 0.5 atm of NH_3 . What would be the pressure of H_2S where equilibrium is reached.								S when				
	equilibil	NH₄HS(\rightleftharpoons	NH₃(g)	+ H ₂ S (g);	K ₀ = 0.	11				
	(A) 1.16	353 atm			653 atm			653 atm		(D) 5.1	653 atm		
29.	Vapour density of PCI ₅ is 104.16 but when heated to 230°C its vapour density is reduced to 62. The deg of dissociation of PCI ₅ at this temperature will be :								degree				
	(A) 6.8%				(B) 68%		(C) 46%		(D) 64%				
30.	For the	For the reaction, $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ the amount of CaO after attainment of equilibrium can											
	be increased by – (A) adding some CaCO ₃ (s) (E							(B) removing some CaCO ₃ (s) (D) decreasing the temperature					
1.	(B)	2.	(C)	3.	(D)	ANSWE	ER KEY (D)	5.	(B)	6.	(C)	7.	(D)
8.	(C)	9.	(A)	10.	(B)	11.	(C)	12.	(C)	13.	(C)	14.	(A)
15.	(A)	16.	(C)	17.	(B)	18. 25	(B)	19.	(A)	20. 27	(C)	21.	(C)
22. 29.	(A) (B)	23. 30.	(D) (C)	24.	(C)	25.	(A)	26.	(A)	27.	(A)	28.	(B)